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Overview

Timeline
• Project Start Date: Oct. 2018
• Project End Date: July 2022
• Percent Complete: 20%

Barriers
• Integration to utility at medium voltage
• Protection
• System siting, integration and deployment

Budget
• Total Project Funding

• DOE Share: $ 2,675,952
• Contractor Share: $ 3,323,775

• Funding for 2020
• DOE Share: $ 1,099,164
• Contractor Share: $ 1,336,347

Partners
• NCSU/FREEDM – Lead
• ABB Inc.
• New York Power Authority (NYPA)
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Relevance

Objectives:
• Develop an electric vehicle (EV) extreme fast charging (XFC) station with 

direct connection to the medium voltage distribution network 
• Develop a direct-current (DC) distribution network with solid-state 

protection to supply multiple EV charging ports

Project Impact:
• Framework for designing XFC stations to minimize installation and 

operating costs, manage grid impact, and provide design flexibility
• Field demonstration of novel technologies for future XFC installations
• Installation, operation and maintenance guidelines for deployment of 

XFC infrastructure with proposed unique architecture. 
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Approach

Develop and deploy a 1 MW 
medium voltage XFC station:
• Shared bi-directional Solid State 

Transformer (SST) connecting 
directly to the medium voltage 
(MV) distribution system

• DC distribution network with 
solid-state DC protection

• Energy management platform
• DC Nodes for local isolation and 

DC/DC conversion
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Milestones

BP1 BP2 BP3

System 
Development

System 
Integration

System 
Deployment

* Denotes Go/No-Go Milestone BP: Budget Period

10/1/2018 – 7/31/2020 8/1/2020 – 7/31/2021 8/1/2021 – 7/31/2022

• Construct SST & DC node*

• Select site
• Preliminary engineering 
diagrams

• SST & DC nodes 
operational

• Engineering diagrams 
complete

• Complete system 
integration *

• Site preparation 
complete

• System integration
• Protection validated
• Safety evaluation

• Commission System
• System transported 
and installed

• Use cases tested
• Data collection
• Public demonstration
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Technical Accomplishments & Progress
• Deployment Site Selected
• Solid State Transformer (SST) design and control approach finalized and 

validated
• System simulation model built, analysis completed, module performance 

at system level evaluated 
• SST Module Constructed and Tested
• DC Solid State Breakers constructed; developed EV charging 

infrastructure protection coordination
• Leveraged proven, near-commercial ABB product line to de-risk DC Node 

development
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SST Architecture
• The SST connects to three-phase 

13.2kVLL input and delivers 750V DC
• A total of 18 modules are arranged 

in 6 levels using input-series 
output-parallel configuration

• Each level is made up of three 
modules processing three-phase 
power on the input and delivering 
DC power at the output

• Each module consists of an active 
front end (AFE) and dual-active-
bridge (DAB) isolated DC-DC stage
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Design Approach & Control Architecture
• Each Dual active bridge (DAB) 

autonomously regulates its medium 
voltage (MV) bus, minimizing 
communication requirements

• Centralized controller for all AFEs 
with local protection and decoding 

• Interleaved modulation of AFEs and 
low voltage (LV) side bridges of DABs

• DABs designed for sinusoidal power 
flow, minimizing storage 
requirements on MV DC capacitors 

• Solid-state protection on MV and LV

Href (s) and Hpff (s) are low-pass filters
PIR -- Proportional Resonant Integral Controller
BPSM with CVB -- Bidirectional phase-shift modulator with capacitor voltage balancing 8



Simulation Model for System Level 
Evaluation
No-load to full-load transition*
• System connects to 13.2kV feeder 
• A step change in load causes a dip in the LV 

DC bus voltage
• Central AFE controller reacts by generating a 

grid current command
• DAB controller regulates the MVDC bus 

voltage to be proportional to the LVDC bus 
voltage feedback

• DAB controller uses a resonant compensation 
to minimize 2nd harmonic oscillation on the 
MV DC bus 

* Comprehensive simulations in Reviewer-Only slides 9



Active Front End (AFE)Topology

Cascaded-Flying-
Capacitor Multilevel AFE
• Higher DC-link voltage 

(2.15 kV)
• Fewer isolation components
• Lower cost (1.2kV 

TO-247 SiC MOSFET*)
• 12X system versus device 

switching frequency
• Lower total harmonic 

distortion; smaller filter

V1

V6

A

N

Device fsw: 5kHz

Module fsw: 10kHz

System fsw: 60kHz

V1

V6

VAN
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*SiC MOSFET – Silicon Carbide metal–oxide–
semiconductor field-effect transistor 



AFE Optimized Thermal and Loop Inductance

• Low cost TO-247 SiC MOSFETs
• Integrated cooling
• Optimized rubber buffer assembly
• Aluminum Nitride (AlN) 

thermal interface
• Minimum loop inductance

AFE Module

Topology Multilevel flying capacitor converter

fsw 5 kHz

Device C3M0016120D (16 mΩ / 1200V)

Flying Cap 68 nF

Rubber 
buffer

Half-bridge 1.2 kV SiC MOSFETs
AlN thermal interface

Local dc cap
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DAB Topology and Control

• All-SiC solution with 1700V modules on 
MV and 1200V modules on LV side

• Switching frequency of 20kHz, with 
module interleaving on the LV bus

• A proportional-integral-resonant (PIR) 
compensator eliminates 2nd harmonic 
oscillation on the MV DC bus

• A bidirectional phase-shift modulator 
(BPSM) with capacitor voltage 
balancing (CVB) generates the gate 
pulses for the primary and secondary 
bridges of the DAB
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Transformer Design

Design Challenges
• Application requires partial discharge inception 

voltage to exceed 40kV
• Thermal design for natural air flow cooling
• Simple construction allowing repeatable results 
• Controlled leakage inductance

Design Approach
• Rely on winding separation in air to meet 

isolation requirements; reinforced isolation 
between windings and core

• Compatible with transformer insertion in oil
• Relatively low flux in ferrite distributes heat 

and ensures operation in linear range

Parameter Value

Primary/Secondary Voltage ±2,150V / ±750 V

Frequency 20 kHz square wave

Average (Peak) Power 83 (167) kW

Primary/Secondary current 63Arms / 180Arms

Transformer efficiency > 99%

Primary leakage inductance 137 uH

Magnetizing inductance 13.4 mH

Parasitic capacitance 116 pF
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DAB Stage Testing

• DAB stage tested at 95 kW in open loop; efficiency 
measured at 98.9%, all devices soft-switched

• Hotspot within 70 degree under long-term operation
• Low voltage overshoot on device drain-to-source voltage
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SST Module Prototype

Active front-end DAB MV side Transformer DAB LV side
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DC distribution with solid-state protection

• High penetration of power 
converters requires fast system 
protection components and 
algorithms to be developed

• Commercially available breaker 
technology is not fast enough to 
guarantee protection coordination

• We are developing two classes of 
Solid State Circuit Breakers (1500 A 
and 500 A) and fast fault detection 
and coordination algorithms
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System study and protection coordination
• Minimum effective 

inductance for a 
downstream fault 
estimated to be < 5 µH

• Consequently, maximum 
fault di/dt is 280-300 
A/µs

• di/dt based mixed signal 
trip unit is required to 
trip breaker within 8-9 µs 
and ensure selectivity
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Solid State Breakers Design 
Solid State Circuit Breaker 
Technology
• Ultra-fast Mixed Signal Fault 

Detection for high di/dt
• Low conduction loss RB-IGCT for 

high efficiency and fast interruption
• Advanced 2-phase cooling for 1500 A 

breaker for high power density
• Forced air cooling for 500 A 

unidirectional breaker 

RB-IGCTs + 2-phase cooling 1500A SSCB - Bidirectional

500A SSCB - UnidirectionalRB-IGCTs + forced air
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Site Selection
• NYPA is a self-permitting entity; 

NYPA identified demonstration site 
at a facility in Marcy, NY

• Utilizes an existing 13.2 kV 
connection

• Site is in a secure facility where all 
personnel are trained to handle 
high voltage systems

• NYPA identified local contractor to 
begin generating engineering 
drawings
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Site Layout
1. XFC Station connects to a T-tap 

on the 13.2kV side of a line 
crew facility 500kVA 
transformer

2. New 4-way switchgear will 
allow for isolation of the XFC 
from the utility

3. XFC SST and MV and LV solid 
state protection will be housed 
in a customized 20-foot shipping 
container

4. Four enclosures house DC nodes
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Responses to Previous Year Reviewers’ 
Comments

• This is the first year that the project has been reviewed

21



Collaboration & Coordination with Other 
Institutions
• NCSU: SST, DC Node 

(DC/DC converter) development; XFC 
system integration. 

• ABB: development and testing of the 
solid-state breakers and system 
protection scheme. Help identify and 
source near-commercial DC/DC stage 

• NYPA: system deployment and 
demonstration. 
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Remaining Challenges and Barriers
SST Stage:
Complete Assembly and testing of SST; delays due to the contracting 
delays, component sourcing and covid-19 pandemic. 

DC Protection:
Testing of breaker units for short circuit with very high di/dt typical of 
the proposed system architecture. Testing of coordination between 
upstream and downstream breakers with high di/dt short circuit fault 
scenarios.

Site Preparation:
Finalize detailed engineering drawings. 
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Proposed Future Work
Key Challenges
• Design of the SST stage, 

meeting key safety 
requirements

• Design and coordination of 
solid state protection

• Procuring vehicle loads 
capable of stressing the 
charger system

Future Work
• Demonstrate SST and DC 

Nodes
• Demonstrate solid state 

breakers and protection 
coordination

• System Integration

Any proposed future work is subject to change based on funding levels 
24



Summary

• Team on track to demonstrate a 1MVA XFC station with
• A MV SST that connects directly to distribution grid
• A shared DC bus that allows for local energy management to alleviate 

stress on the grid

• Three year project plan:
• 2020: Component Validation
• 2021: System validation
• 2022: System Deployment and Data Collection

25



Technical Backup Slides
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DAB Control
• The voltage reference is generated based on 

LVDC bus feedback; a first order low-pass-filter 
(LPF) is used as

𝑣𝑣𝑀𝑀𝑀𝑀∗ 𝑠𝑠 = 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠 × 𝐾𝐾 × 𝑣𝑣𝐿𝐿𝑀𝑀 𝑠𝑠

𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠 =
𝜔𝜔𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠 + 𝜔𝜔𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟
; 𝐾𝐾 = ⁄2150 750

• A proportional-integral-resonant (PIR) 
compensator eliminates the 2nd harmonic 
oscillation on the MVDC bus

𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 𝑠𝑠 = 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝 1 + 1
𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠

+ 1
𝜏𝜏𝑟𝑟𝑚𝑚𝑚𝑚

× 𝜔𝜔𝑟𝑟𝑟𝑟
𝑠𝑠2+𝜔𝜔𝑟𝑟𝑟𝑟𝑠𝑠+𝜔𝜔2

2

• A bidirectional phase-shift modulator (BPSM) 
with capacitor voltage balancing (CVB) is used 
to generate the gate pulses for the primary and 
secondary bridges of the DAB
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DAB Control: Bidirectional Phase-Shift Modulation 
with Capacitor Voltage Balancing
• Capacitor voltage balancing is achieved independent of 

power flow direction
• Modulator does not need to actively select between small 

voltage vectors; neutral current generated automatically by 
power stage

• No voltage offset introduced across transformer terminal
• Only one switching transition within one switching period
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Lab Implementation of initial SST Prototype

• Initial SST prototype will be tested at 500kVA in 
the NCSU lab using resistive loads

• System will be stacked on racks while preserving 
thermal and electrical isolation between 
individual modules

• System-level thermal design for the shipping 
container enclosure is in process 
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System study and protection coordination
Fault scenarios under 
investigation (sample):
1) Fault at the output of the SST

2) Fault at the output of the BESS 
DC-DC converter

3) Fault at the DC bus (within the 
switchgear cabinet)

4) Fault on one of the charger 
branch, just after CB3 breaker 
(high di/dt fault)

5) Fault on one of the charger 
branch, near the input of the 
charger DC-DC converter (lower 
di/dt fault compared to 4)
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Protection Coordination - Example
Fault location 4 – demonstration 
of high availability
• Worst case for fault di/dt : 

~280A/µs*
• Initial current in CB1 : ~1500A
• Initial current in CB3 : ~500A
• Peak fault current in CB3 : 

2600A
• Time to trip : 8.2µs
• Negative di/dt in CB4 and CB5 

is also reflected in the positive 
fault di/dt in CB3
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